资源类型

期刊论文 203

年份

2023 12

2022 24

2021 21

2020 13

2019 15

2018 6

2017 8

2016 5

2015 6

2014 17

2013 8

2012 4

2011 6

2010 11

2009 4

2008 11

2007 14

2006 4

2005 6

2004 2

展开 ︾

关键词

强度 3

力常数 2

本构关系 2

析出强化 2

混凝土 2

疲劳 2

键能 2

键长 2

高强度 2

1860 MPa等级 1

4250 m 1

9 %~12 % Cr 钢 1

&prime 1

&gamma 1

ANSYS 1

DQ&P 1

F-B双相钢 1

M23C6 碳化物 1

PBO纤维片材 1

展开 ︾

检索范围:

排序: 展示方式:

Effect of embedment length of untreated natural fibres on the bond behaviour in cement mortar

Gudimella RAMAKRISHNA, Sriraman PRIYADHARSHINI

《结构与土木工程前沿(英文)》 2018年 第12卷 第4期   页码 454-460 doi: 10.1007/s11709-017-0454-2

摘要: The present investigation is focused on studying the effects of various matrices with 1:3, 1:4 and 1:5 mortars and fibre types of sisal and coir on the bond behavior at various ages of curing, i.e., 24 h, 3 d, 7 d and 28 d. The other parameters included in the investigation are water/cement (w/c) ratio, sand gradation and embedment length of fibres. In addition, the type of failure of sisal and coir fibres for different mixes of mortars at various curing ages is also reported. From the results, it is seen that the bond strength is improving with respect to age of curing in case of sisal fibres, but decreases in case of coir fibres. The failure of fibres due to fibre fracture is observed in sisal fibres and fibre pullout is observed in coir fibres. The other varying parameters such as mortar mixes, sand gradation, w/c ratio and embedded length also showed significant effect on bond behaviour of sisal and coir fibre with the cement mortar mixes.

关键词: bond strength     cement mortar     natural fibre     pullout test     type of failure    

Study of bond strength between various grade of Ordinary Portland Cement (OPC) and Portland Pozzolane

A D POFALE, S P WANJARI

《结构与土木工程前沿(英文)》 2013年 第7卷 第1期   页码 39-45 doi: 10.1007/s11709-013-0193-y

摘要: Since last two decades, the Portland Pozzolane Cement (PPC) is extensively used in structural concrete. But, till to date, a few literature is available on bond strength of concrete using PPC mixes. There are many literatures available on bond strength of concrete mixes using Ordinary Portland Cement (OPC). Hence, a comparative study was conducted on bond strength between OPC and PPC mixes. In the present investigation, total 24 samples consisting of M20, M35 and M50 grades of concrete and 16 and 25 mm diameter of TMT bar were tested for 7 and 28 days. The pullout bond test was conducted on each specimen as per IS: 2770-1967/1997 [1] and the results were observed at 0.25 mm slip at loaded end called as critical bond stress and at maximum bond load called as maximum bond stress. It was observed that the critical bond strength of PPC mixes is 10% higher than OPC mixes. Whereas, marginal improvement was noticed in maximum bond strength of PPC mixes. Hence, based on these findings, it could be concluded that development length for PPC mixes could be reduced by 10% as compared with same grade of OPC mixes.

关键词: bond strength     Portland Pozzolane Cement (PPC) concrete     Ordinary Portland Cement (OPC) concrete     bond between concrete and steel     pullout test     development length    

Shear strength model of the reinforced concrete beams with embedded through-section strengthening bars

Linh Van Hong BUI; Phuoc Trong NGUYEN

《结构与土木工程前沿(英文)》 2022年 第16卷 第7期   页码 843-857 doi: 10.1007/s11709-022-0834-0

摘要: In this study, finite element (FE) analysis is utilized to investigate the shear capacity of reinforced concrete (RC) beams strengthened with embedded through-section (ETS) bars. Effects of critical variables on the beam shear strength, including the compressive strength of concrete, stiffness ratio between ETS bars and steel stirrups, and use of ETS strengthening system alone, are parametrically investigated. A promising method based on the bond mechanism between ETS strengthening and concrete is then proposed for predicting the shear resistance forces of the strengthened beams. An expression for the maximum bond stress of the ETS bars to concrete is developed. This new expression eliminates the difficulty in the search and selection of appropriate bond parameters from adhesion tests. The results obtained from the FE models and analytical models are validated by comparison with those measured from the experiments. Consequently, the model proposed in this study demonstrates better performance and more accuracy for prediction of the beam shear-carrying capacity than those of existing models. The results obtained from this study can also serve researchers and engineers in selection of the proper shear strength models for design of ETS-strengthened RC beams.

关键词: embedded through-section     strengthening     fiber-reinforced polymer     finite element     shear strength model     bond mechanism    

用经典力学计算氢分子的键长键能及力常数

陈景

《中国工程科学》 2003年 第5卷 第6期   页码 39-43

摘要:

氢原子中1 s电子的电子云呈球形,电子的最大几率密度分布出现在玻尔半径a0的球壳内,认为几率密度分布及电子云属统计规律,意味着已经使用了宏观时标,这样就使氢分子体系中能量和时间的作用量远大于普郎克常数;根据电子云的交叠,用经典力学计算了基态氢分子的结构常数,获得键长、键能及力常数的表达式分别为Re = 〓a0,De = ze/4〓a0,k = ze/2〓,采用原子单位(a.u.)时z、e及a0均为1,获得Re=1.414 a.u.,De=0.177 a.u.,k=0.354 a.u.,这些数值与实验值的相对误差分别<1%,<2%和<4%;成键模型直观,物理意义明确,计算中不含任何人为性参数。

关键词: 氢分子     键长     键能     力常数    

Effect of noble metal nanoparticle size on C–N bond cleavage performance in hydrodenitrogenation: a study

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 1986-2000 doi: 10.1007/s11705-023-2337-5

摘要: Breakage of the C–N bond is a structure sensitive process, and the catalyst size significantly affects its activity. On the active metal nanoparticle scale, the role of catalyst size in C–N bond cleavage has not been clearly elucidated. So, Ru catalysts with variable nanoparticle sizes were obtained by modulating the reduction temperature, and the catalytic activity was evaluated using 1,2,3,4-tetrahydroquinoline and o-propylaniline with different C–N bond hybridization patterns as reactants. Results showed a 13 times higher reaction rate for sp3-hybridized C–N bond cleavage than sp2-hybridized C–N bond cleavage, while the reaction rate tended to increase first and then decrease as the catalyst nanoparticle size increased. Different concentrations of terrace, step, and corner sites were found in different sizes of Ru nanoparticles. The relationship between catalytic site variation and C–N bond cleavage activity was further investigated by calculating the turnover frequency values for each site. This analysis indicates that the variation of different sites on the catalyst is the intrinsic factor of the size dependence of C–N bond cleavage activity, and the step atoms are the active sites for the C–N bond cleavage. When Ru nanoparticles are smaller than 1.9 nm, they have a strong adsorption effect on the reactants, which will affect the catalytic performance of the Ru catalyst. Furthermore, these findings were also confirmed on other metallic Pd/Pt catalysts. The role of step sites in C–N bond cleavage was proposed using the density function theory calculations. The reactants have stronger adsorption energies on the step atoms, and step atoms have d-band center nearer to the Fermi level. In this case, the interaction with the reactant is stronger, which is beneficial for activating the C–N bond of the reactant.

关键词: sp3/sp2-hybridized C–N bond     noble metal nanoparticle     catalytic active site     turnover frequency     DFT    

The effect of carbon nanotubes and polypropylene fibers on bond of reinforcing bars in strain resilient

Souzana P. TASTANI,Maria S. KONSTA-GDOUTOS,Stavroula J. PANTAZOPOULOU,Victor BALOPOULOS

《结构与土木工程前沿(英文)》 2016年 第10卷 第2期   页码 214-223 doi: 10.1007/s11709-016-0332-3

摘要: Stress transfer between reinforcing bars and concrete is engaged through rib translation relative to concrete, and comprises longitudinal bond stresses and radial pressure. The radial pressure is equilibrated by hoop tension undertaken by the concrete cover. Owing to concrete’s poor tensile properties in terms of strength and deformability, the equilibrium is instantly released upon radial cracking of the cover along the anchorage with commensurate abrupt loss of the bond strength. Any improvement of the matrix tensile properties is expected to favorably affect bond in terms of strength, resilience to pullout slip, residual resistance and controlled slippage.The aim of this paper is to investigate the local bond of steel bars developed in adverse tensile stress conditions in the concrete cover. In the tests, the matrix comprises a novel, strain resilient cementitious composite (SRCC) reinforced with polypropylene fibers (PP) with the synergistic action of carbon nano-tubes (CNT). Local bond is developed over a short anchorage length occurring in the constant moment region of a four-point bending short beam. Parameters of investigation were the material structure (comprising a basic control mix, reinforced with CNTs and/or PP fibers) and the age of testing. Accompanying tests used to characterize the cementitious material were also conducted. The test results illustrate that all the benefits gained due to the synergy between PP fibers and CNTs in the matrix, namely the maintenance of the multi-cracking effect with time, the increased strength and deformability as well as the highly increased material toughness, were imparted in the recorded bond response. The local bond response curves thus obtained were marked by a resilient appearance exhibiting sustained strength up to large levels of controlled bar-slip; the elasto-plastic bond response envelope was a result of the confining synergistic effect of CNTs and the PP fibers, and it occurred even without bar yielding.

关键词: carbon nanotubes     strain resilient cementitious composite     polypropylene fibers     tensile bending     bond    

Effect of bond enhancement using carbon nanotubes on flexural behavior of RC beams strengthened with

《结构与土木工程前沿(英文)》 2022年 第16卷 第1期   页码 131-143 doi: 10.1007/s11709-021-0787-8

摘要: This paper studied the effect of incorporation of carbon nanotubes (CNTs) in carbon fiber reinforced polymer (CFRP) on strengthening of reinforced concrete (RC) beams. The RC beams were prepared, strengthened in flexure by externally bonded CFRP or CNTs-modified CFRP sheets, and tested under four-point loading. The experimental results showed the ability of the CNTs to delay the initiation of the cracks and to enhance the flexural capacity of the beams strengthened with CFRP. A nonlinear finite element (FE) model was built, validated, and used to study the effect of various parameters on the strengthening efficiency of CNTs-modified CFRP. The studied parameters included concrete strength, flexural reinforcement ratio, and CFRP sheet configuration. The numerical results showed that utilization of CNTs in CFRP production improved the flexural capacity of the strengthened beams for U-shape and underside-strip configurations. The enhancement was more pronounced in the case of U-shape than in the case of use of sheet strip covers on the underside of the beam. In case of using underside-strip, the longer or the wider the sheet, the higher was the flexural capacity of the beams. The flexural enhancement of RC beams by strengthening with CNTs-modified CFRP decreased with increasing the rebar diameter and was not affected by concrete strength.

关键词: RC beams     flexural     strengthening     CFRP     CNTs     finite element    

Controllable synthesis of a large TS-1 catalyst for clean epoxidation of a C=C double bond under mild

《化学科学与工程前沿(英文)》 2023年 第17卷 第6期   页码 772-783 doi: 10.1007/s11705-022-2280-x

摘要: Development of a titanium silicalite-1 (TS-1) catalyst with good crystallinity and a four-coordinate Ti framework is critical for efficient catalytic oxidation reaction under mild conditions. Herein, a size-controlled TS-1 zeolite (TS-1#0.1ACh (acetylcholine)) was synthesized via steam-assisted crystallization by introducing acetylcholine as a crystal growth modifier in the preparation process, and TS-1#0.1ACh was also employed in epoxidations of different substrates containing C=C double bonds. The crystalline sizes of the as-synthesized TS-1#0.1ACh catalysts were controlled with the acetylcholine content, and characterization results showed that the particle sizes of highly crystalline TS-1#0.1ACh zeolite reached 3.0 μm with a good Ti framework. Throughout the synthetic process, the growth rate of the crystals was accelerated by electrostatic interactions between the connected hydroxyl groups of the acetylcholine modifier and the negatively charged skeleton of the pre-zeolites. Furthermore, the TS-1#0.1ACh catalyst demonstrated maximum catalytic activity, good selectivity and high stability during epoxidation of allyl chloride. Importantly, the TS-1#0.1ACh catalyst was also highly versatile and effective with different unsaturated substrates. These findings may provide novel, easily separable and large TS-1 catalysts for efficient and clean industrial epoxidations of C=C double bonds.

关键词: size-controlled TS-1     crystal modifier     steam-assisted crystallization     epoxidation    

Prediction of the flash points of alkanes by group bond contribution method using artificial neural networks

PAN Yong, JIANG Juncheng, WANG Zhirong

《化学科学与工程前沿(英文)》 2007年 第1卷 第4期   页码 390-394 doi: 10.1007/s11705-007-0071-z

摘要: A group bond contribution model using artificial neural networks, which had the high ability of nonlinear of prediction, was established to predict the flash points of alkanes. This model contained not only the information of group property but also connectivity in molecules. A set of 16 group bonds were used as input parameters of neural networks to study the correlation of molecular structures with flash points of 44 alkanes. The results showed that the predicted flash points were in good agreement with the experimental data that the absolute mean absolute error was 6.9 K and the absolute mean relative error was 2.29%, which were superior to those of traditional group contribution methods. The method can be used not only to reveal the quantitative correlation between flash points and molecular structures of alkanes but also to predict the flash points of organic compounds for chemical engineering.

关键词: information     nonlinear     quantitative correlation     superior     molecular    

从氢原子质子化模型计算H2+的结构参数

陈景

《中国工程科学》 2004年 第6卷 第11期   页码 29-32

摘要:

对氢分子离子提出了氢原子质子化的结构模型,从微观时标和宏观时标分析了H2+中库仑吸引力和两核排斥力的动态平衡,认为氢原子畸变后的电子云在两核中点产生e/8的电荷重心时可以束缚住一个裸质子;据此推导出键长、键能及力常数的计算公式;使用原子单位分别获得Re=2 au,De=0.109 735 au,k=0.109 735 au,与实验测定值及Bishop最精确的计算值惊人地接近。

关键词: 氢分子离子     键长     键能     力常数    

超高性能混凝土中钢纤维-基体界面粘结的研究 Review

邓毓琳, 张祖华, 史才军, 吴泽媚, 张超慧

《工程(英文)》 2023年 第22卷 第3期   页码 215-232 doi: 10.1016/j.eng.2021.11.019

摘要:

超高性能混凝土(UHPC)是一种相对较新的水泥混凝土复合材料,由于其优异的机械强度和耐久性,在基础设施建设中具有巨大的应用潜力。钢纤维与基体的界面粘结性能是决定UHPC其他力学性能的主要因素,包括抗拉、弯曲、抗压强度和破坏模式(断裂行为)。本文通过讨论并比较多种纤维拉拔测试方法和分析模型,全面综述了UHPC的纤维-基体粘结行为的研究进展;详细确定并讨论了影响纤维-基体粘结的参数,包括纤维的几何形状和方向、表面处理、基体的组成和强度。最后,基于现有研究,对未来UHPC增强方法和测试细节提出了建议。

关键词: 超高性能混凝土     界面粘结     钢纤维     拉拔行为    

Evaluating the material strength from fracture angle under uniaxial loading

Jitang FAN

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 288-293 doi: 10.1007/s11709-018-0480-8

摘要: The most common experimental methods of measuring material strength are the uniaxial compressive and tensile tests. Generally, shearing fracture model occurs in both the tests. Compressive strength is higher than tensile strength for a material. Shearing fracture angle is smaller than 45° under uniaxial compression and greater than 45° under uniaxial tension. In this work, a unified relation of material strength under uniaxial compression and tension is developed by correlating the shearing fracture angle in theory. This constitutive relation is quantitatively illustrated by a function for analyzing the material strength from shear fracture angle. A computational simulation is conducted to validate this theoretical function. It is full of interest to give a scientific illustration for designing the high-strength materials and engineering structures.

关键词: strength     fracture     mechanics    

The effects of interfacial strength on fractured microcapsule

Luthfi Muhammad MAULUDIN, Chahmi OUCIF

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 353-363 doi: 10.1007/s11709-018-0469-3

摘要: The effects of interfacial strength on fractured microcapsule are investigated numerically. The interaction between crack and microcapsule embedded in mortar matrix is modeled based on cohesive approach. The microcapsules are modelled with variation of core-shell thickness ratio and potential cracks are represented by pre-inserted cohesive elements along the element boundaries of the mortar matrix, microcapsules core, microcapsule shell, and at the interfaces between these phases. Special attention is given to the effects of cohesive fracture on the microcapsule interface, namely fracture strength, on the load carrying capacity and fracture probability of the microcapsule. The effect of fracture properties on microcapsule is found to be significant factor on the load carrying capacity and crack propagation characteristics. Regardless of core-shell thickness ratio of microcapsule, the load carrying capacity of self-healing material under tension increases as interfacial strength of microcapsule shell increases. In addition, given the fixed fracture strength of the interface of microcapsule shell, the higher the ratio core-shell thickness, the higher the probability of microcapsules being fractured.

关键词: interfacial strength     cohesive elements     microcapsule     core-shell thickness ratio     fracture properties    

Effect of loading rate on shear strength parameters of mechanically and biologically treated waste

《环境科学与工程前沿(英文)》 2022年 第16卷 第12期 doi: 10.1007/s11783-022-1595-7

摘要:

● Mechanical behavior of MBT waste affected by loading rate was investigated.

关键词: Mechanically and biologically treated waste     Landfill     Triaxial test     Loading rate     Axial strain     Shear strength parameter    

The strength–dilatancy characteristics embraced in hypoplasticity

Zhongzhi FU, Sihong LIU, Zijian WANG

《结构与土木工程前沿(英文)》 2013年 第7卷 第2期   页码 178-187 doi: 10.1007/s11709-013-0191-0

摘要: The strength-dilatancy characteristics of frictional materials embraced in the hypoplastic model proposed by Gudehus and Bauer are investigated and compared with the revised model suggested by Huang. In the latter the deviatoric stress in the model by Gudehus and Bauer is replaced by a transformed stress according to the stress transformation technique proposed by Matsuoka. The flow rule, the failure state surface equation and the strength-dilatancy relationship embraced in both models are derived analytically. The performance of the two hypoplastic models in reproducing the relationship between the peak strength and the corresponding dilation rate under triaxial compression, plane compression and plane shearing are then extensively investigated and compared with experimental results and with the predictions made by particular classical stress-dilatancy theories. Numerical investigations show that the performance in reproducing the strength-dilatancy relationship is quite satisfactory under triaxial compression stress state in both models and the predictions made by the transformed stress based model are closer to the results obtained from classical stress-dilatancy theories for plane compression and plane shearing problems.

关键词: strength     dilatancy     hypoplasticity     frictional materials    

标题 作者 时间 类型 操作

Effect of embedment length of untreated natural fibres on the bond behaviour in cement mortar

Gudimella RAMAKRISHNA, Sriraman PRIYADHARSHINI

期刊论文

Study of bond strength between various grade of Ordinary Portland Cement (OPC) and Portland Pozzolane

A D POFALE, S P WANJARI

期刊论文

Shear strength model of the reinforced concrete beams with embedded through-section strengthening bars

Linh Van Hong BUI; Phuoc Trong NGUYEN

期刊论文

用经典力学计算氢分子的键长键能及力常数

陈景

期刊论文

Effect of noble metal nanoparticle size on C–N bond cleavage performance in hydrodenitrogenation: a study

期刊论文

The effect of carbon nanotubes and polypropylene fibers on bond of reinforcing bars in strain resilient

Souzana P. TASTANI,Maria S. KONSTA-GDOUTOS,Stavroula J. PANTAZOPOULOU,Victor BALOPOULOS

期刊论文

Effect of bond enhancement using carbon nanotubes on flexural behavior of RC beams strengthened with

期刊论文

Controllable synthesis of a large TS-1 catalyst for clean epoxidation of a C=C double bond under mild

期刊论文

Prediction of the flash points of alkanes by group bond contribution method using artificial neural networks

PAN Yong, JIANG Juncheng, WANG Zhirong

期刊论文

从氢原子质子化模型计算H2+的结构参数

陈景

期刊论文

超高性能混凝土中钢纤维-基体界面粘结的研究

邓毓琳, 张祖华, 史才军, 吴泽媚, 张超慧

期刊论文

Evaluating the material strength from fracture angle under uniaxial loading

Jitang FAN

期刊论文

The effects of interfacial strength on fractured microcapsule

Luthfi Muhammad MAULUDIN, Chahmi OUCIF

期刊论文

Effect of loading rate on shear strength parameters of mechanically and biologically treated waste

期刊论文

The strength–dilatancy characteristics embraced in hypoplasticity

Zhongzhi FU, Sihong LIU, Zijian WANG

期刊论文